
HURRICANE PROTECTION PROJECT

数100mm (数5000 电温度 application)。

FOX POINT HURRICANE BARRIER

PROVIDENCE RIVER, PROVIDENCE, RHODE ISLAND

DESIGN MEMORANDUM NO. 14 CONCRETE AGGREGATES

U.S. Army Engineer Division, New England Corps of Engineers Waltham, Mass.

NOVEMBER 1959

ENGWE(3 Nov 59)

lst Ind

SUBJECT: Design Memorandum No. 14, Concrete Materials, for Fox Point Hurricane Barrier, Providence, Rhode Island

Office of the Chief of Engineers, Washington, D.C., 27 November 1958

TO: Division Engineer, U.S. Army Engineer Division, New England, Waltham, Mass. ATTN: NEDGW

Approved.

FOR THE CHIEF OF ENGINEERS:

1 Incl w/d

F. B. SIJCHTER

Chief, Engineering Division

Civil Works

U. S. ARMY ENGINEER DIVISION, NEW ENGLAND

CORPS OF ENGINEERS

424 TRAPELO ROAD WALTHAM 54. MASS.

ADDRESS REPLY TO: DIVISION ENGINEER

REFER TO FILE NO. NEDGW

3 November 1959

SUBJECT: Design Memorandum No. 14, Concrete Materials, for

Fox Point Hurricane Barrier, Providence, Rhode Island

TOs

Chief of Engineers
Department of the Army
Washington, D. C.
ATTENTION: ENGWE

In accordance with EM 1110-2-1150 there is submitted for review and approval 10 copies of the Design Memorandum No. 14, Concrete Materials, for the Fox Point Hurricane Barrier, Providence, Rhode Island.

FOR THE DIVISION ENGINEER:

JOHN WM. LESLIE

Chief, Engineering Division

Incl (10 cys)
Des Memo No. 14,
Concrete Materials Fox Point

FOX POINT HURRICANE BARRIER PROVIDENCE RHODE ISLAND

DESIGN MEMO NO. 14

CONCRETE MATERIALS

INDEX TO DESIGN MEMORANDA

No.	Title	Submission Date	Approved
1	Geology	.9 Oct 1959	
2:	Hydrology Preliminary Final	3 June 1959	8 June 1959
3	Deleted		
4	Hurricane Tidal Hydraulics		
5	General Design Memo		
6	Embankment & Foundations		
7	Structural Section I		
8	Structural Section II		
9	River Gates		
10	Pumping Station		
11	Cooling Water Canal		
12	Sewer & Utility Modifications		
13	Providence River Studies		
14	Concrete Materials	·	

FOX POINT HURRICANE BARRIER

DESIGN MEMORANDUM NO. 14

CONCRETE MATERIALS

CONTENTS

Paragraph	Subject	Page
	A. AGGREGATES	1
1 2 3 4	General Investigations Tests Relative Cost Estimates a. Romano Sand and Gravel Company b. Morse Sand and Gravel Company c. Fanning and Doorley Construction Company d. New Haven Trap Rock Company e. M. A. Gammino Company	1 1 1 2 2 2 2 2 2
	B. WATER	2
5 6	General Tests	2 3
	C. FOUNDATION SOILS	3
	D. CONCLUSIONS AND RECOMMENDATIONS	4

LIST OF PLATES

Plate No.	<u>Title</u>
14~1	Location of Commercial Aggregate Sources
14-2	Romano Company Water-Cement Ratio
14-3	Morse Sand and Gravel Company, Water-Cement Ratio
	LIST OF TABLES
No.	<u>Title</u>
14-1	Concrete Aggregate Investigations Test Data Summary
14-2	Concrete Aggregate Investigations Test Data Summary

U. S. ARMY ENGINEER DIVISION, NEW ENGLAND CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM 54, MASSACHUSETTS

FOX POINT HURRICANE BARRIER

PROVIDENCE RIVER

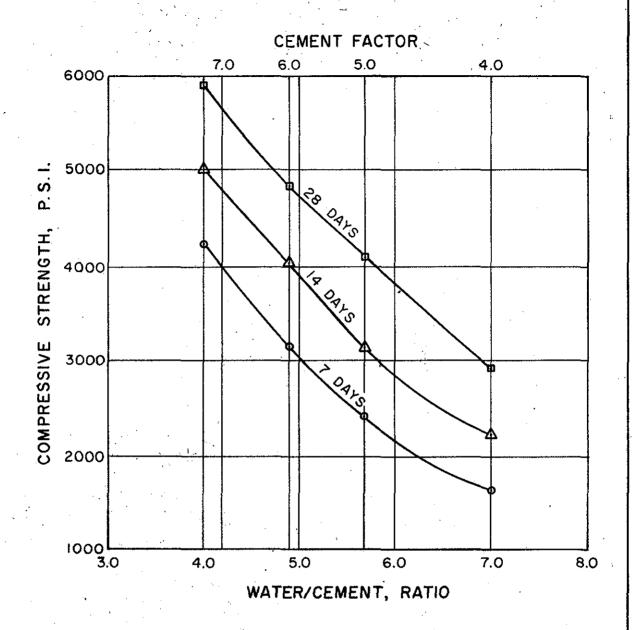
RHODE ISLAND

DESIGN MEMORANDUM NO. 14

CONCRETE MATERIALS

OCTOBER 1959

A. AGGREGATES


- 1. General. Approximately 55,000 cubic yards of concrete will be required for construction of the barrier, pumping station, and floodwalls of the Providence Hurricane Protection Project. In view of the relatively small quantity of aggregates and the absence of undeveloped sources on the site, investigations have been confined to established commercial sources. All of the three commercial sources within a 15-mile radius of the project site have been recently investigated and tested. A fourth commercial source, although at a distance of 100 miles, is considered because of its high quality aggregate and economic availability. A fifth commercial source, which was only recently developed, is presently being investigated and tested, and the results will be issued as an addendum to this design memorandum. Locations of these sources are shown on Plate No. XIV-1.
- 2. Investigations. Selection of the sources for testing was based on plant facilities and characteristics of materials as determined by visual examination. All of the natural sand and gravel sources investigated are developed in Pleistocene glacial outwash deposits and exhibit a lithological similarity. The Fanning and Doorley Quarry (crushed stone) is developed in igneous rock of the Devonian age. The New Haven Trap Rock Quarry is developed in igneous rock of the Triassic age.
- 3. Tests. Representative samples of the aggregates have been tested for evaluation. Results of the aggregate tests are summarized in Tables XIV-1 and XIV-2.
- 4. Relative Cost Estimates. Estimated delivered prices of the aggregates, based on quoted plant prices, Rhode Island Department of Public Utilities minimum trucking rates, which are currently 25 cents

per ton for the first mile and 5 cents per ton for each additional mile, and current railway shipping charges, are as follows:

- a. Romano Sand and Gravel Company. The nearest commercial source is the Romano Sand and Gravel Company with its main processing plant located at East Providence, Rhode Island, about 4 miles haul distance from the project site. Plant prices are \$1.35/ton for gravel and \$0.75/ton for sand. The delivered price to the site will average \$1.75/ton for gravel and \$1.15/ton for sand.
- b. Morse Sand and Gravel Company. The Morse Sand and Gravel Company, with its main processing plant located in Dodgeville, Massachusetts, about 10 miles haul distance from the project site. Plant prices are \$1.35/ton for gravel and \$1.00/ton for sand. The delivered price to the site will average \$2.05/ton for gravel and \$1.70/ton for sand.
- c. Fanning and Doorley Construction Company. The Fanning and Doorley Construction Company has its main quarry located at Ashton, Rhode Island, about 12-mile haul distance from the project site. Plant prices for crushed stone range from \$2.15/ton to \$2.55/ton. The delivered price to the site will average \$3.15/ton.
- d. New Haven Trap Rock Company. The New Haven Trap Rock Company has its main quarry located at North Bradford, Connecticut, about 100 miles rail distance from the project site. Plant prices for crushed stone average \$1.40/ton. The delivered price to the site will average \$2.25/ton.
- e. M. A. Gammino Company. The M. A. Gammino Company has its quarry and processing plant located at Cranston, Rhode Island, about 6 miles haul distance from the project. *Plant prices for crushed stone average \$1.80/ton. The delivered price to the site will average \$2.30/ton.*
- *f. Rhode Island Sand and Gravel Company. The Rhode Island Sand and Gravel Company, with its main processing plant located in Warwick, Rhode Island, about 7 miles haul distance from the project site. Plant prices for concrete sand are \$1.05/ton. The delivered price to the site will average \$1.55/ton.*

B. WATER

5. General. The concrete in this waterfront structure will be subjected to the contaminated water in the Providence River, which is a tidal estuary. Therefore, it was deemed necessary to investigate this water so that the necessary protection can be provided. A comprehensive sampling and testing program has been conducted by Bureau of Public Health in connection with other phases of the design studies. In addition, a separate detailed sampling and testing program has been conducted in connection with an investigation of corrosion properties of the water and river mud. Samples were obtained at the high, low, and mean tides, three feet from the water surface and three feet from the bottom and at various other elevations.

M. A. GAMMINO COMPANY, COARSE AGGREGATE RHODE ISLAND SAND AND GRAVEL COMPANY, FINE AGGREGATE

FOX POINT BARRIER PROVIDENCE, RHODE ISLAND

BER				AILES	MATERIAL	SIZE	TESTING	MOER					VE ANALI CENT PAS	SSING	of aggre - by we						SS US IN TEST	LOSS TEST	LOSS	H MOR	TAR ST ERCENT STAND	RENGT OF ARD	FLAT	WEIGHT	11TY 10US	NOL	G	PECIFIC RAVITY		·			sive st		· · · · · · · · · · · · · · · · · · ·		ringat.	PANSION	DURABILITY FACTOR (DFE) 300 CYCLES
\ \S		OURCE AND	REMARKS AND	Z	TESTED	ال ال	LABORATORY AND	2 2		SIEVE S	SIZE IN	INCHES			U.S. S	TANDA	RD SIEV	/ES NU	MBERS	S	ASIO	ESS -	, ¥ ₹	X	,	28	S 2	2 A A	REACTIVE DELETERIC	ABSORPT	¥	¥ €	ERT		AVERAG								ABIL CAC
E Z	LO	CATION	SOURCE	1	(PROCESSED)	75 E	DATE OF TESTS	P.	2 ½	2 1	. .	3 4	1	3 8	4 8	16	30	50	100	200	ABR ABR	RCE SON SLE	PERCEN	E S DAY	DAY	28 DAY	E	PERCEN	AEA ELE	ABS(BULK	BULK S. DR	⋖ .		T FACTO		<u> </u>					X X	85°8
=				Ŧ		ž		SAR	-2	- '2	'	4	2	8				"			₹8	SOUNDNES S CYCLES	ORO B S	₹			PAF	9 83	_ 6			S	АРР	5.0 6	»0 7°	,0 5.	•0 6.	,0 7.	0 5.0	6.0	7.0	E	
1	M.A. Ga Granst	mmine Co.	Operating Quarry	6	Crushed Diorite Gmeiss	2" 1 1/2" 3/4" 1/2"	NED December 1960	61-6-1 61-6-2 61-6-3 61-6-4	-	84 27 - 100	100	10 89 -	1 29 100 9	-	- 1 26 4	-	-	-		** **	8.32 7.28 6.87 28 5.78	3.	.0					3.5 8.9 8.4	nnoc None	0.4 0.6 0.8 1.4	2.82 2.77 2.78 2.73	2.83 2 2.79 2 2.80 2 2.77 2	2. 85 2. 82 2. 85 2. 84	2hho 3	n60 1,26	io 319	90 40:	30 503	90 1110	4860		*2*	66*
\$	Rhode Sand & Warwic	Island Gravel Co. k, R.I.	Operating Fit in glacial outwash deposits	7	Natural Sand	No• It		61-5-1	-	-	-	-	•	-	100 88	66	43	13	3	1.2	2.87 -	5.	.9 .50	.00	121	139		I	nnoc None	0.7	2.62	2,63 2	2.66	·		- In the second						The state of the s	inasionasaina irancin

PETROGRAPHIC ANALYSIS

1. Predominately Quarts Gneiss, Schist, Vein Quartz and Pegmatite. 79% Diorite Gneiss, 16% Schist, 5% Vern Quartz and Pegmatite, 10% moderately weathered.

2. 'Is composed 73% Quartz and Quartzite, 19% Granite and Pegmatite, h% Gneiss, 2% Schist, and 2% Basic Rock Types, 1% moderately weathered.

* Tested February 1960 by SAD Laboratories

PROVIDENCE LOCAL PROTECTION
FOX POINT BARRIER
PROVIDENCE R. I.

CONCRETE AGGREGATE INVESTIGATION TEST DATA SUMMARY

NEW ENGLAND DIVISION LABORATORIES CORPS OF ENGINEERS NEW ENGLAND DIVISION WALTHAM, MASS. DECEMBER 1960 per ton for the first mile and 5 cents per ton for each additional mile, and current railway shipping charges, are as follows:

- a. Romano Sand and Gravel Company. The nearest commercial source is the Romano Sand and Gravel Company with its main processing plant located at East Providence, Rhode Island, about 4 miles haul distance from the project site. Plant prices are \$1.35/ton for gravel and \$0.75/ton for sand. The delivered price to the site will average \$1.75/ton for gravel and \$1.15/ton for sand.
- b. Morse Sand and Gravel Company. The Morse Sand and Gravel Company, with its main processing plant located in Dodgeville, Massachusetts, about 10 miles haul distance from the project site. Plant prices are \$1.35/ton for gravel and \$1.00/ton for sand. The delivered price to the site will average \$2.05/ton for gravel and \$1.70/ton for sand.
- c. Fanning and Doorley Construction Company. The Fanning and Doorley Construction Company has its main quarry located at Ashton, Rhode Island, about 12-mile haul distance from the project site. Plant prices for crushed stone range from \$2.15/ton to \$2.55/ton. The delivered price to the site will average \$3.15/ton.
- d. New Haven Trap Rock Company. The New Haven Trap Rock Company has its main quarry located at North Bradford, Connecticut, about 100 miles rail haul distance from the project site. Plant prices for crushed stone average \$1.40/ton. The delivered price to the site will average \$2.25/ton.
- e. M. A. Gammino Company. The M. A. Gammino Company has its quarry and processing plant located at Cranston, Rhode Island, about 7 miles haul distance from the project. This source will be in economic competition with the other sources.

B. WATER

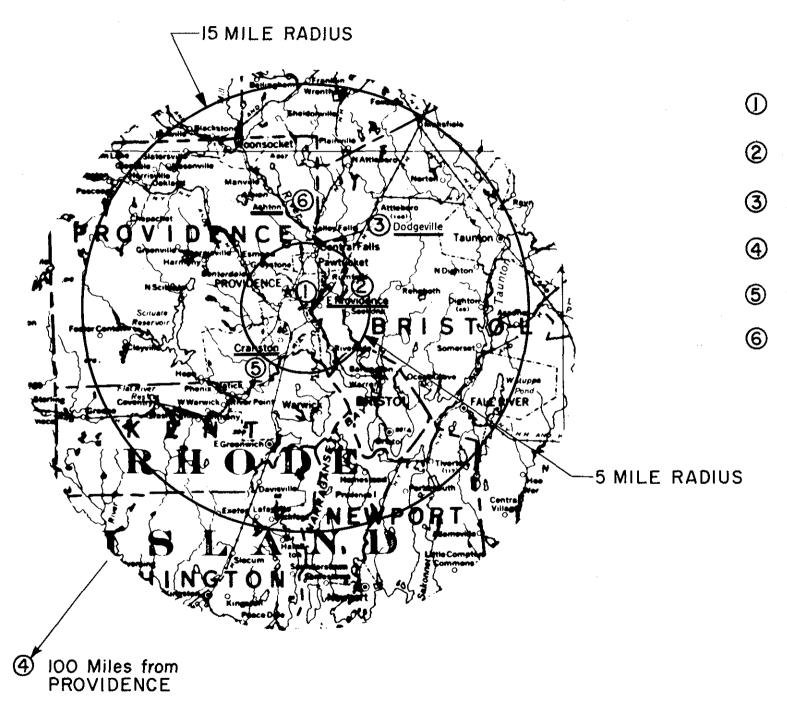
5. General. The concrete in this waterfront structure will be subjected to the contaminated water in the Providence River, which is a tidal estuary. Therefore, it was deemed necessary to investigate this water so that the necessary protection can be provided. A comprehensive sampling and testing program has been conducted by Bureau of Public Health in connection with other phases of the design studies. In addition, a separate detailed sampling and testing program has been conducted in connection with an investigation of corrosion properties of the water and river mud. Samples were obtained at the high, low, and mean tides, three feet from the water surface and three feet from the bottom and at various other elevations.

6. Tests. Typical results of laboratory tests performed on the samples of river water taken three feet from the top and bottom are as follows:

		Test Resu	ılts (Parts	s per Mil	lion) (1)	
	Low	Tide	Me ar	n Tide	High	Tide
Tests	Top	Bottom	Top	Bottom	Top	Bottom
${\mathbb H}_{\mathbf C}$	7.4	7.4	7.9	7.3	8,3	7.6
Turbidity	7†0	. :3	50	.2	70	8
Free Carbon	11.5	14.3	2.0	12.0	0.0	6.5
Dioxide						,
Alkalinity (as CaC	10,)					
Total	98	100	96	105	97	103
Carbonate	0	0	Ō	0	23	0
Bicarbonate	98	100	96	105	74	103
Hydroxide	0	0	0	0	0	0
Free Mineral Acid	0	0	0	0	0	0
Total Hardness (as C _a CO ₃)	000و لم	5 , 250	200و با	5,550	4,600	000و 5
Ferrous Iron, Tota	al O	0	0	0	0	0
Ferric Iron Total	بليل. ٥	0.28	0•ftft	0.20	0•40	0.30
Dissolved	0.02	0.02	0.02	0.02	0.04	0.02
Suspended	0.42	0.26	0.42	0.18	0,36	0.28
Sulfides as S=	0.05	0.05	0.05	0.05	0.05	0.05
Silica	2.2	3.2	1.0	1.6	1.0	0.04
Sulphates	750,	2 ,31 0	1,880		1 , 980	2,230
Chlorides	750,	16,870	13 , 650	16,890	500و بلا	16,150
Manganese	0	0	0	0	0	0
Solids, Total	23 , 520	31,200	25 , 370	32,650	27,980	31,720
Staining	Severe	Severe	Severe	Severe	Severe	Severe

(1) Except for pH.

C. FOUNDATION SOILS

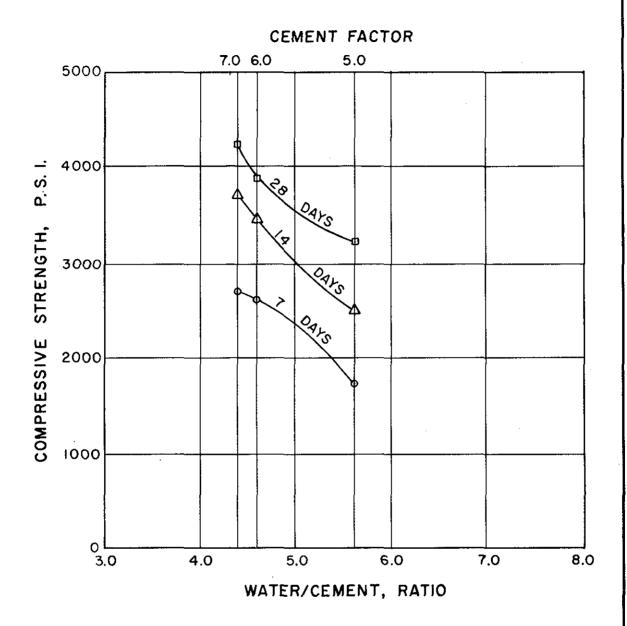

The foundation materials consist of organic silts in the river, and fill material on the abutments which consist in part of unburned coal and coal ashes. The bedrock contains the Rhode Island Series which is, in part, carboniferous. Tests on the mud indicate a sulfide content in excess of 2,000 p.p.m. Based on these data, it is considered that potentially reactive material is present in the foundation soils.

D. CONCLUSIONS AND RECOMMENDATIONS

Based on the data presented herein, the durability of the crushed quarry stone coarse aggregates is substantially greater than for the gravel coarse aggregate. However, all of the aggregates tested are considered acceptable for use in the proposed structure and approval of these sources is recommended.

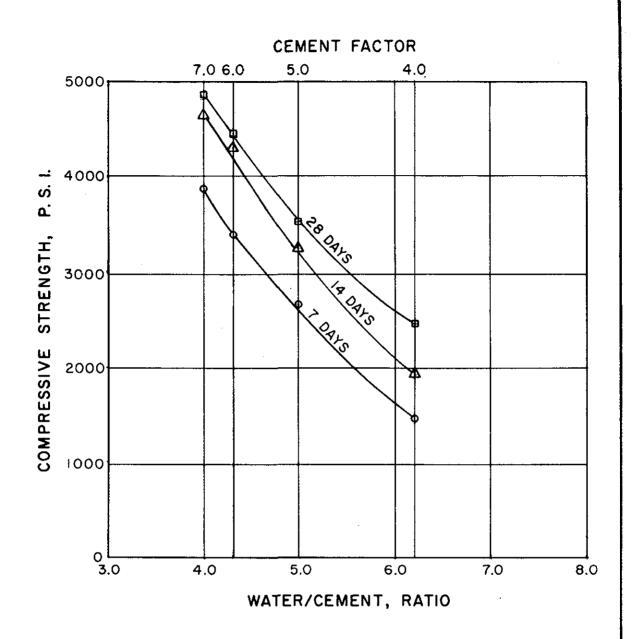
Tests performed on the river water show that the sulfate content exceeds the maximum limit (1000 ppm) permitted by Civil Works Bulletin ENGWE 56-18 for Type II cement. Therefore, in accordance with this bulletin, Type V cement is required for the exposed portions of the structure. However, due to the relatively small quantity of concrete required and difficulty in handling two types of cement, it is recommended that Type V cement be used throughout. This would include use in any concrete piles because of the potential reactivity of the foundation soils.

No consideration is given to use of the river water for either mixing or curing concrete. Water for these uses will be obtained from the City water supply or other acceptable source.



- Fox Point Barrier
- (2) L. Romano Sand & Gravel Co.
- Morse Sand & Gravel Co.
- New Haven Traprock Co.
- (5) M. A. Gammino Co.
- 6 Fanning & Doorley

PROVIDENCE LOCAL PROTECTION
FOX POINT BARRIER
PROVIDENCE, R.I.


LOCATION OF COMMERCIAL AGGREGATE SOURCES

NEW ENGLAND DIVISION LABORATORIES
CORPS OF ENGINEERS NEW ENGLAND DIVISION
WALTHAM, MASS. OCT. 1959

ROMANO SAND AND GRAVEL CO., AGGREGATES

FOX POINT BARRIER
PROVIDENCE, RHODE ISLAND

MORSE SAND AND GRAVEL CO., AGGREGATES

FOX POINT BARRIER PROVIDENCE, RHODE ISLAND

3ER			ES		2E	T-07440	BER					Sieve A	Analys	sis o	f Agg	regai Weig	te ht	· · · · · ·					TEST TIONS OSS	TEST Ag SO,	MTIES TE I	MORT/ PE	AR STE RCENT TANDA	RENGT OF IRD	FLAT	ED		Ls &	NO F	SPEC GRAV							ve Stre				FICENT SASSON F	ITY OFE)
NUMB	SOURCE	REMARKS And	<u> </u>	MATERIAL TESTED	L SI	TESTING LABORATORY	2		SIEVE	SIZE								D SIEV	ES NI	MBER	s	10. US	SION OLUTI	SS	7 2 2 Z				N ES	SAT S		ERIA	RCEN	ایرا پ	Z Z	<u> </u>							28 DAY A		S Z	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ITEM N	LOCATION	SOURCE		(PROCESSED)	NORMA	AND DATE OF TESTS	SAMPLE	2 1/2	2	1 2		3	d i	3 . ■	4	8	16	30	50	100	200	FINE	L.A. ABRASIO 500 REVOLU PERCENT	SCYCLE	PERCENT ORGANIC INF (PPW ASTM PL	DAY	DAY	DAY	PARTIC	PERCENT	REA	MAT	ABSC	BULK	S S S S S S S S S S S S S S S S S S S	5. 0				. 0 6.			5.0 6.0		LINE AL THE FRAAA	DURABILITY FACTOR (DFE) 300 CYCLES
1.	Romano Sand & Gravel Co. E. Providence, R. I.	Operating pit in glacial outwash deposits		Gravel	2-1/2" 1-1/2" 3/4" 3/8"	S. A. D. March 1959	82-579 82-578 82-577 82-576		100	100	' -	91 2		- 2	- - 1 16	- - - 11	, , , , , ,		. 1 1 2	- - - -	-	7.90 7.83 7.06 5.79	24							7 I	nnoc	None	0.8 0.8 0.7 1.2	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	68	176	8 259	98 26	59 24 !	51 35	05 374	45 3	225 383	4224	6.2	54
2.		·	-	Natural Sand			82-575	-	-	-	-		-	\dashv		83	58	37	18	6	2.	2. 98	· <u>-</u>	15.2	2 < 500			104	(9 1	nnoc	None	1.2	2.	66										5 , 4 .	
3.	Morse Sand & Gravel Co. Dodgeville, Mass	Operating pit in glacial outwash deposits			2-1/2" 1-1/2" 1" 3/4" 3/8"	S. A. D. March 1959	82-574 82-573 82-572 82-571 82-570	-	-			1 43 64 100 8		- 2 1 3	- - 9 13	- - 4 3	1 1 1		-	-	-		17	2.8	3				8	3 1:	nnoc	None	0.6 0.7 0.6 1.1 1.4	2. 6 2. 6 2. 6 2. 6 2. 6	58 57 56	2650	335						3915 435		5.2	. 46
4.	=]	Natural Sand	No. 4		82-569	1	-	-	-	-	- 1	.00	99	83	54	26	10	4	2	3, 24	-	8.4	4 < 500			117	10) I	nnoc	None	1.1	2.	65										5	
																																			-											

Petrographic Analysis

1. Gravel: Predominantly Quartzite, Granite, and basic igneous rocks, with slate & phyllite and miscellaneous rock types. 36% Quartzite, 19% Granitic Rock Types, 19% Basic Rock Types, 13% Slate & Phyllite, 7% Conglomerate, 4% Veinqartz, 2% Miscellaneous, 18% weathered.

2. Sand: Is composed of 66% Quartz and Quartzite, 7% Granitic Rock Types, 9% Basic Rock Types, 9% Slate & Phyllite, 4% Feldspar, 5% Miscellaneous.

3. Gravel: Predominantly Granitic Rock Types, Quartzite and basic igneous rocks, and miscellaneous rock types. 31% Granitic Rock Types, 20% Basic Rock Types, 17% Slates, Phyllite, and Schist, 20% Quartzite, 9% Conglomerate, 3% Miscellaneous, 9% Moderately weathered.

4. Sand: Is composed 58% Quartz & Quartzite, 11% Granitic Rock Types, 9% Basic Rock Types, 8% Slate, Phyllite & Schist, 8% Feldspar, 5% Miscellaneous.

* Compressive Strength Tests by NED Laboratory

PROVIDENCE LOCAL PROTECTION
FOX POINT BARRIER
PROVIDENCE R.I.

CONCRETE AGGREGATE INVESTIGATIONS TEST DATA SUMMARY

NEW ENGLAND DIVISION LABORATORIES CORPS OF ENGINEERS NEW ENGLAND DIVISION WALTHAM, MASS. OCT 1959

gr.			ES		SIZE		BER			Siev	ve Anal	ysis of	Aggre	gate					S # TEST FIONS	TEST AgSO ₄ OSS	RITES IOM I	RTAR S PERCEN STAND	TRENGT T OF ARD	FLAT	WEIGHT	Sno Sno	NO.	SPE (npressive S				FICIENT	PENSICA PE	DURABILITY FACTOR (DFE) 300 CYCLES
MBE	SOURCE	REMARKS	X	MATERIAL	S	TESTING LABORATORY	NO N	S	HEVE SIZ						ARD SIE	VES N	UMBERS .	Z 12	U LU	SS - N	MPU PLA PLA			ES IND IGAT	KAL	TERI	RPT		RY FNT	<u> </u>			14 DAY AV		 		0 "	χ ₀	120 28 8 20
ž	AND LOCATION	AND SOURCE	<u>ر</u>	(PROCESSED)	SM AL	AND DATE OF TESTS	PLE				3 1	3			. 70	50	100 20	FINE	MOD MOD	NONE CLES	STM P	S 7	28 Y DAY	PARTICI FLON	AL AL	DELE	ABSO PEF	BULL		CEME	ENT FA	CTOR	CEMENT F	ACTOR	CEME	NT FACT	OR N	X	8 C T S
ΞE			HAU		Š	,	SAM	2 2 2	12	1	3 1	3 8	4	8 1	6 30	50	100 20		188 98.	SOUNDNES 5 CYCLES PERCEN	ORG AS			PAR	PERCEN		1		SS	5.5	6.0	6.5	5.5 6.0	6.5	5.5	6.0	6.5 SE		-6"
5	Fanning & Doorley Quarr Ashton, Rhode Island	Operating Quarr	у 12	Crushed Granite	2-1/2' 1-1/2' 3/4'' 1/2'' 3/8''	S. A. D. April 1956 Tested for Woon- socket Local Protection Project	82-228		100	100 9	23 4 95 8 00 88 - 100		- - 1 24	-		1		7 7 6	. 54 . 74	0.9				11 11 13 22 13	Inno	c None	0.4 0.2	2.	.67								4.	. 3	79
.6	New Haven Trap Rock Co. North Bradford, Conn.	p Operating Quarr	у 101	Crushed Diabase	2" 1" 3/4" 1/2" 3/8"	O. R. D. February 1955 Tested for Bosto Army Base	n 55228	100 99	100	71 100	 27 1 99 29 - 100	38	- 2 2 77		 10 10		 8 -	7 6 6	5.57 2.73 3.96 13.5 5.60 2.74					7 .16	Inno	oc None	0.8	2.	93	3710	4680	5890	4705 5600) 6880	4240	5345 65	580	. 4	86
			AND		The state of the s																																		

Petrographic Analysis

- 5. Granite: Predominantly quartz with some feldspar and plagioclase, mica-biotite and muscovite and miscellaneous materials. 54% quartz, 36% feldspar, orthoclase and plagioclase, 9% mica-biotite and muscovite and 1% miscellaneous materials.
- 6. Diabase: All of this sample consists of a dark-greenish-black, fine-grained, basic igneous rock with composition and texture of a diabase, 100% diabase.

Note: Durability of Fanning and Doorley Quarry crushed granite computed with fine aggregate from Wrentham Sand and Gravel Co., Wrentham, Mass., and New Haven Trap Rock diabase computed with fine aggregate from Bradford Weston, Inc., Hingham, Mass.

PROVIDENCE LOCAL PROTECTION
FOX POINT BARRIER
PROVIDENCE R.I.

CONCRETE AGGREGATE INVESTIGATIONS TEST DATA SUMMARY

NEW ENGLAND DIVISION LABORATORIES
CORPS OF ENGINEERS NEW ENGLAND DIVISION
WALTHAM, MASS. OCT 1959